GeoTIFF
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Resolution
-
Corine Land Cover 2018 (CLC2018) is one of the Corine Land Cover (CLC) datasets produced within the frame the Copernicus Land Monitoring Service referring to land cover / land use status of year 2018. CLC service has a long-time heritage (formerly known as "CORINE Land Cover Programme"), coordinated by the European Environment Agency (EEA). It provides consistent and thematically detailed information on land cover and land cover changes across Europe. CLC datasets are based on the classification of satellite images produced by the national teams of the participating countries - the EEA members and cooperating countries (EEA39). National CLC inventories are then further integrated into a seamless land cover map of Europe. The resulting European database relies on standard methodology and nomenclature with following base parameters: 44 classes in the hierarchical 3-level CLC nomenclature; minimum mapping unit (MMU) for status layers is 25 hectares; minimum width of linear elements is 100 metres. Change layers have higher resolution, i.e. minimum mapping unit (MMU) is 5 hectares for Land Cover Changes (LCC), and the minimum width of linear elements is 100 metres. The CLC service delivers important data sets supporting the implementation of key priority areas of the Environment Action Programmes of the European Union as e.g. protecting ecosystems, halting the loss of biological diversity, tracking the impacts of climate change, monitoring urban land take, assessing developments in agriculture or dealing with water resources directives. CLC belongs to the Pan-European component of the Copernicus Land Monitoring Service (https://land.copernicus.eu/), part of the European Copernicus Programme coordinated by the European Environment Agency, providing environmental information from a combination of air- and space-based observation systems and in-situ monitoring. Additional information about CLC product description including mapping guides can be found at https://land.copernicus.eu/user-corner/technical-library/. CLC class descriptions can be found at https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html/.
-
Annual temperature sum for days with Ta >5 °C (degree-days) at about 9 km resolution at the equator, using different climate data source and based on different Representative Concentration Pathways (RCPs) according to the time period as follows: - climate data source CRUTS32 based on historical data for the time period 1981-2010; - climate data source ENSEMBLE based on the Representative Concentration Pathway RCP8.5 for time periods 2041-2070 and 2071-2100. The Annual temperature sum for days with Ta >5 °C (degree-days) dataset is part of the GAEZ v4 Agro-climatic Resources - Thermal Regime sub-theme. For additional information, please refer to the GAEZ v4 Model Documentation.
-
The datasets represent monthly Sensible and Latent Heat Flux at 0.5 degree spatial resolution from 1982 - 2010 over the African continent. For a detailed description of the data sets see: Jung, M. et all. (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research - Biogeosciences, 116, doi:10.1029/2010JG001566. request by email. This data set has been produced in the framework of the "Climate change predictions in Sub-Saharan Africa: impacts and adaptations (ClimAfrica)" project, Work Package 1 (WP1). WP1 (Past climate variability) aimed to provide consolidated data to other WPs in ClimAfrica, and to analyze the interactions between climate variability, water availability and ecosystem productivity of Sub-Saharan Africa. Various data streams that diagnose the variability of the climate, in particular the water cycle, and the productivity of ecosystems in the past decades, have been collected, analyzed and synthesized. The data streams range from ground-based observations and satellite remote sensing to model simulations. More information on ClimAfrica project is provided in the Supplemental Information section of this metadata.
-
Soil and terrain suitability for maize dataset, at about 1 km resolution, investigates soil suitability and both soil and terrain suitability for maize, under rain-fed condition, with high and low inputs. The Soil and terrain suitability for crops datasets are part of the GAEZ v4 Theme 1 Land and Water Resources, Soil Suitability sub-theme. In the GAEZ v4 the Soil Suitability assessment sub-theme, soil qualities are evaluated for each crop and input/management level and for different water supply systems (rain-fed and irrigated). The results are crop and input level specific soil suitability ratings, which are used for the crop suitability and attainable yield assessment presented in Theme 4. Terrain suitability is also estimated according to terrain-slope classes and location-specific rainfall amounts and rainfall-concentration characteristics to account for soil erosion risks related to crop cover dynamics. Soil and terrain suitability are combined in an edaphic rating factor by crop, water supply type and input level, which is an important input for the estimation of agro-ecological crop suitability and attainable yields presented in Theme 4. For further details, please refer to the GAEZ v4 Model Documentation.
-
On the basis of soil parameters provided by the Harmonized World Soil Database (HWSD) seven key soil qualities important for crop production have been derived, namely: nutrient availability, nutrient retention capacity, rooting conditions, oxygen availability to roots, excess salts, toxicities, and workability. Soil qualities are related to the agricultural use of the soil and more specifically to specific crop requirements and tolerances. For the illustration of soil qualities, maize was selected as reference crop because of its global importance and wide geographical distribution. Toxicities (SQ.6) Low pH leads to acidity related toxicities, e.g., aluminum, iron, manganese toxicities, and to various deficiencies, e.g., of phosphorus and molybdenum. Calcareous soils exhibit generally micronutrient deficiencies, for instance of iron, manganese, and zinc and in some cases toxicity of molybdenum. Gypsum strongly limits available soil moisture. Tolerance of crops to calcium carbonate and gypsum varies widely (FAO, 1990; Sys, 1993). Low pH and high calcium carbonate and gypsum are mutually exclusive. Acidity related toxicities such as aluminum toxicities and micro-nutrient deficiencies are accounted for respectively in SQ1, nutrient availability, and in SQ2, nutrient retention capacity. This soil quality SQ6 is therefore only including calcium carbonate and gypsum related toxicities. The most limiting of the combination of excess calcium carbonate and gypsum in the soil, and occurrence of petrocalcic and petrogypsic soil phases is selected for the quantification of SQ6. Note that the classes used in the Soil Quality evaluation are: 1: No or slight limitations 2: Moderate limitations 3: Sever limitations 4: Very severe limitations 5: Mainly non-soil 6: Permafrost area 7: Water bodies Remember that classes are qualitative not quantitative. Only classes 1 to 4 are corresponding to an assessment of soil limitations for plant growth. Class 1 is generally rated between 80 and 100% of the growth potential, class 2 between 60 and 80%, class 3 between 40 and 60%, and class 4 less than 40%.
-
On the basis of soil parameters provided by the Harmonized World Soil Database (HWSD) seven key soil qualities important for crop production have been derived, namely: nutrient availability, nutrient retention capacity, rooting conditions, oxygen availability to roots, excess salts, toxicities, and workability. Soil qualities are related to the agricultural use of the soil and more specifically to specific crop requirements and tolerances. For the illustration of soil qualities, maize was selected as reference crop because of its global importance and wide geographical distribution. Excess salts (SQ5) Accumulation of salts may cause salinity. Excess of free salts referred to as soil salinity is measured as Electric Conductivity (EC in dS/m) or as saturation of the exchange complex with sodium ions, which is referred to as sodicity or sodium alkalinity and is measured as Exchangeable Sodium Percentage (ESP). Salinity affects crops through inhibiting the uptake of water. Moderate salinity affects growth and reduces yields; high salinity levels may kill the crop. Sodicity causes sodium toxicity and affects soil structure leading to massive or coarse columnar structure with low permeability. Apart from soil salinity and sodicity, conditions indicated by saline (salic) and sodic soil phases may affect crop growth and yields. In case of simultaneous occurrence of saline (salic) and sodic soils the limitations are combined. The most limiting of the combined soil salinity and/or sodicity conditions and occurrence of saline (salic) and/or sodic soil phase is selected. Note that the classes used in the Soil Quality evaluation are: 1: No or slight limitations 2: Moderate limitations 3: Sever limitations 4: Very severe limitations 5: Mainly non-soil 6: Permafrost area 7: Water bodies Remember that classes are qualitative not quantitative. Only classes 1 to 4 are corresponding to an assessment of soil limitations for plant growth. Class 1 is generally rated between 80 and 100% of the growth potential, class 2 between 60 and 80%, class 3 between 40 and 60%, and class 4 less than 40%.